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ABSTRACT 

This report deals with shock analysis and design as they affect equipment. Considered 
in the analysis is a two part function composed of a ramp tangent to a half-sine pulse in 
which the rise times and decay times can be controlled independently of each other. Such 
a pulse is more representative of the physical condition present in a partially plastic, 
partially elastic shock machine such as the lead pellet types. The pulse is changed by 
increments from an ideal terminal peak sawtooth to an ideal half-sine. 

Positive and negative response spectra with a range of damping from zero to critical 
are presented. Fourier spectra are also presented. 

Insofar as is known, this is the first time these test pulses have been studied in such 
detail. The data presented should prove quite useful for designers using several response 
spectrum or Fourier spectrum techniques for design problems resulting from sawtooth 
or half-sine shock tests. The report shows an important type of modal interaction failure 
which cannot be adequately excited with a symmetrical waveform even if testing is ac- 
complished in both directions. 

ill 
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SYMBOLS 

peak value of an excitation 

ordinate of the point of tangency of the ramp-sine 
function as shown in Figure 2b 

viscous damping coefficient 

proximity, (derivation in text) 

static value of D, (see text) 

base of Napierian logarithms (2.7183) 

generalized excitation 

general function of a specific variable 

cyclic frequency 

complex Fourier spectrum 

the imaginary part or component (b) of the complex 
number a + jb 

stiffness 

mass 

subscript meaning "the maximum value of" 

0, 1, 2, 3 —etc. 

subscript meaning "the peak value of' 

generalized response of a linear single-degree-oiT-freedom 
system 

the real part or component (a) of the complex number a + Jb 

instantaneous time 

duration of an excitation time function 

duration of an excitation time function 

time of x.se to the peak value of an excitation 

abscissa of the point of tangency of the ramp-sine 
function as shown in Figure 2b 
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INTRODUCTION 

Much has been written concerning the advantages of a terminal peak sawtooth wave for 
shock testing and design purposes (References 1-4). The superiority of the waveform is 
demonstrated by showing the undamped positive and negative acceleration shock spectra. 
These spectra tend to be nearly constant above some selectable frequency as shown in 
Figure 1, and the negative values are equal to the positive values. The latter feature has 
been used to Justify testing in only one direction along each of the three principal axes of 
the equipment. 

An important point was demonstrated by Lowe and Cavanaugh (Reference 2) when they 
studied an actual test pulse and were able to show that practical shock machine pulses 
are not quite as superior as would be indicated by the spectrum of the theoretically per- 
fect sawtooth. They used the work of Jacobsen and Ayre (References 5, and 6) to explain 
their results on a theoretical basis. This work shows that a finite drop-off time (rather 
than zero drop-off tlm ■ as in the theoretically perfect pulse) results in a reduction of the 
magnitudes of the res. jal (and hence the negative) undamped spectrum particularly at 
higher frequencies. The pulse studied by Jacobsen and Ayre was a triangular pulse with 
a rise time independent of the drop-off time. This pulse, shown in Figure 2a is useful in 
studying the responses of equipments to a sawtooth test because it retains most of the es- 
sential features of the shock. None of the previous references, however, have considered 
the effects of damping, which are always present in a realistic system. A report by Luke 
(Reference 7) of the University of Texas considers the effect of damping on the positive 
response spectrum of the theoretically perfect sawtooth. The negative response spectrum, 
and practical deviations from the theoretically perfect waveform, however, were not 
studied. Since both damping and drop -off time exert a different (and much larger) influ- 
ence on the negative response spectrum, a gap in our knowledge exists in this area. 

All of the previous studies used analytical functions which are only partially Justifiable 
on the basis of physical reality, that is, the analytical pulse does not look like the oscll- 
logram of an actual test pulse nor can it be fully Justified by reasoning from the physical 
phenomena present during the actual test. 

In the past few years several publications (References 6, 8, and 9) have dealt with the 
application of the Fourier transform to shock analysis and design problems. Painter and 
Parry (Reference 10) have applied Fourier spectrum techniques to the problem of labo- 
ratory simulation of the shock environment. It has also been suggested that the Fourier 
spectrum be used as a means of specifying shock test conditions (Reference 11). Morrow 
(Reference 12) regards the Fourier spectrum as a more fundamental analytical tool and 
suggests that it may eventually supersede the shock spectrum for purposes of data re- 
duction. 

In view of the foregoing discussion, it was decided to undertake an effort designed to 
bring increased agreement between theoretical and practical results and to provide design 
information to be used in several different design methods. This was to be accomplished 
by selection of an analytical function with variable characteristics and reduction of the 
pulse to damped and undamped positive and negative shock spectra and to complex Fourier 
spectra for variations of the function over a given range of values of the ratio of the rise 
time to the drop-off time. 

Manuscript released by the author November 1964 for publication as an RTD Technical 
Report. 
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After the function was selected, it became apparent that the function could also be used 
to study the effects of distortion on the half-sine pulse and to study the effects of sym- 
metry and asymmetry as represented by the half-sine and terminal peak sawtooth wave- 
forms. These studies were also included. 

Finally, the work was expanded to include demonstration of the superiority of the termi- 
nal peak sawtooth waveform for testing purposes when the failure criterion is the proxim- 
ity or collision of two uncoupled simple systems. 

Designers can make direct use of the pulse in the solution of preliminary design prob- 
lems when the differential equations of motion of the system can be written, or with the 
convolution (Du Hamel's) integral for simple linear systems. These design methods are 
covered by most of the standard shock and vibration texts (References 4-6, and 13-16) 
and engineering mathematics (References 17 and 18) texts. The pulse may also be used 
with phase-plane graphical techniques for the solution of a wide variety of linear and non- 
linear, single and multi-degree-of-freedom problems including various types of damping 
(References 5, 6, and 19). The shock spectra may be used directly if the system can be 
considered to behave as a linear single-degree-of-freedom system or they may be used 
with normal mode theory (References 20-23) for more complex systems. The Fourier 
spectra may be used with a hypothetical transfer function in the preliminary design of 
linear systems. When the design reaches the hardware stage, the actual transfer function 
can be measured for use with the spectra. A recent paper by Mains (Reference 9) thor- 
oughly explores Fourier design techniques. Several other publications (References 6, 8, 
and 15) also treat the subject. 

SELECTION OF THE ANALYTICAL FUNCTION 

Theoretically, it is possible to produce shaped pulses which decay from a peak value to 
one g  in zero time on a free-fall shock machine. This is done by dropping a perfectly 
rigid table onto a shaped plastic pellet resting on an infinitely massive perfectly rigid 
anvil. All of the kinetic energy of the table is absorbed by plastic deformation of the pel- 
let. At the instant when all of the kinetic energy has been dissipated in doing work to de- 
form the pellet, the acceleration will drop instantaneously to one  g. 

In a practical machine using a lead pellet as the plastic element, the ideal pulse is un- 
obtainable due to elasticity in the pellet and elements of the machine. This is illustrated 
graphically in Figure 3. The figure represents the major elements of the shock machine 
and the pellet after the shock is over and the elements shown are at rest. The test setup 
is shown schematically as a lumped parameter system consisting of masses and linear 
elastic elements. This is because the table and anvil are not perfectly rigid, that is, K * 

and K   are not infinite, and the lead pellet is not perfectly plastic but also exhibits elas- 

ticity K«. Thus the pulse generation system is partially plastic and partially elastic. 

The waveform for a perfectly elastic linear system has been shown many times to be a 
perfect half-sine. During this pulse the free-fall velocity is reduced to zero at the peak 
of the pulse and then increased to the initial value in the opposite direction at the end of 
the pulse causing a rebound to the original drop height because elastic systems do not 

*See list of symbols 
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dissipate energy. During ehe rising portion of the pulse, the elastic element completely 
converts the kinetic energy of the free-falling table and test item into potential energy 
stored in the spring at the peak acceleration. During the unloading portion of the pulse, 
the stored energy is returned to the table and test item increasing their kinetic energy 
to the original value. The timing of events during the pulse is a function of the falling 
mass and the spring rate. 

Figure 4 shows the results of this partially elastic pulse generation mechanism in a 
photograph of an actual machine generated terminal peak sawtooth pulse. A superposed 
ideal sawtooth pulse is Included for comparison. This pulse was generated with a lead 
pellet on a standard, commercially available, gravity-powered Impact machine. 

The actual terminal peak sawtooth test pulse differs from the theoretical pulse in the 
following ways: 

(a) The rising portion is not quite linear, although this pulse Is exceptionally good In 
this respect. (Pulses, normally, are more nonlinear). 

•  (b) There are no discontinuities in the pulse, especially at the peak which rounds smooth- 
ly into the decaying portion of the curve. 

(c) A finite drop-off time is exhibited in the unloading portion of the pulse after the peak 
is reached. 

vd) A high frequency low amplitude oscillation appears at the end of the pulse. The fre- 
quency is approximately 1750 cps. 

These observable differences are explained as follows: 

(a) The linearity of the rising portion of the pulse is a function of the pellet shape. With 
some effort, the rising ponion can be made more linear by redesign of the pellet. The 
results, however, may not be worth the effort. 

(b) Physically generated pulses never exhibit discontinuities. The rounding at the peak 
is attributed to the partial elasticity of the generation system. 

(c) Any system with elasticity requires time to unload. During the drop-off era, the 
table and test item are being accelerated in a vertically upward direction due to the re- 
lease of the energy stored in the elastic elements. The table then rebounds as a result of 
the upward acceleration. Tills is the same physical condition present In the generation of 
a half-sine shock pulse with a linear spring and the unloading portion of the pulse appears 
to be nearly a quarter-sine as it is with the half-sine pulse. 

(d) The structural ringing at the end of the pulse is associated with the predominant 
natural mode of the test machine. Tills structural response is excited by the high rate- 
of-change of the acceleration (jerk) In the drop-off. This may or may not have important 
consequences depending on the frequencies and amplltltudes Involved and also the test 
item. Since this problem is a very specific problem, it cannot be treated as part of a 
generalized analytic function without vastly multiplying the complexity of the study. In 
future work, it is believed that the "tall-wagging" on the pulse can be handled as a sep- 
arate damped sinusoid using super-position methods. This aspect will not be treated In 
this paper. 

I- 
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Although the previous discussion refers to the lead-pellet terminal peak sawtooth pulse, 
some elasticity is a characteristic of all methods of pulse generation. As a result, all 
practical sawtooth pulses have a rounded peak and require a finite drop-off time. An ana- 
lytical function based on the previous development will, therefore, have general applica- 
bility. 

The selected pulse is shown in Figure 2b. It has all the essential features of the actual 
test pulse except the structural ringing at the end. It is composed of a ramp tangent to a 
half-sine. The analytical statement of the function is as follows: 

f   (t)  =  f 1 (t) + f2 (t) 

fjCt)   =   Bt/Ti O^t^Tj 

f   (t)  =  0, t   ^ O, T   ^ t 
tr(t-2TR + T) 

f2 (t)   =   A sin     2(J.T )      '  Tl   s t 'T, TR ^ T 

f2 (t)  . O, t < Tj, T < t 

In addition to the physical significance, the ramp-sine function has several other niceties 
which make it useful for a variety of present and future studies: 

(a) When TR and T are equal, the function is a theoretically perfect terminal peak saw- 
tooth. 

(b) When TR equals half of T, the function is a theoretically perfect half-sine. 

(c) If the function is defined for negative values of time, when TR   is equal to T, the 
function Is a theoretically perfect initial peak sawtooth. 

(d) When the function Is defined for negative values of T, it Is the mirror image of the 
function defined for positive values of T. 

These features make it possible to vary the function Incrementally from an initial peak 
sawtooth through a half-sine to a terminal peak sawtooth by varying the ratio of TR to T. 

The present paper considers only positive values of time. Some of the pulses studied are 
shown In Figure 5. In addition to these, spectra of one other pulse are presented in this 
paper. It has a TD to T ratio of .909 and represents the condition of maximum decay for 

K 
the nominal 10 millisecond shocks of MIL-STD-810A. The nominal 6 millisecond shock 
of MIL-STD-810A is covered by the pulse with a TR to T ratio of .870. Minimum duration 

times for these tests are given by the ideal case where the TR to T ratio Is 1.0. 

r 
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SHOCK RESPONSE SPECTRA 

The response spectra were computed on a digital computer by determining the general- 
ized response R from the generalized second order linear differential equation of a single- 
degree-of-freedom system. This equation was developed by Professor Ayre (Reference 6) 
and is quite useful. 

&       2CR 

WL 
u 

+ R « E 
n 

The advantages of this generalized form are discussed In a previous paper (Reference 24). 
A table of specific excitations and responses Is Included In the appendix of this paper for 
those who are Interested In the responses of systems to a pulse of this shape for other 
motional parameters as well as acceleration. The specific excitation used for this prob- 
lem Is the acceleration time function ii. The specific differential equation then becomes: 

- 6 -2Cu}., 6 -üJ    6 » u n        n 

where  ö  is the relative displacement. Conversion of the generalized response to the 
2 

specific response is as follows:  R --u;   6. The response spectra are shown in Figures 6 

through 12. The ordlnates are in the normalized general form: 

R -w2  6 m n     m 

where the subscripts m  und p refer to the maximum and peak values. The abscissa is 
the normalized product fT where f is the natural frequency of the responding system 
and T is the time length of the excitation function. Each curve represents a different 
damping ratio C. 

The maximum relative displacement response is obtained from the previous relation- 
ship: 

-u 

m 
tt", 

(^L) 
n 

These spectra were computed for comparsion on the basis of equal amplitudes and equal 
durations based on the assumption that it is much easier for a test engineer to control the 
peak value and duration of a specified shock motion than it is to match the specified shape. 
The study, therefore, was aimed primarily at showing the effects of deviation from speci- 
fied shapes. 

Examination of the ideal sawtooth spectra of Figure 12 Indicates that the addition of 
damping smoothes out the ripples in the spectrum. It Is also seen that damping has a 
greater effect in reducing negative responses than it does in reducing positive responses. 
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Finally, the figure shows that the undamped negative responses are between 31 percent 
and 54 percent larger than the damped negative responses for C = 0.1. This amount of 
damping is rather common for equipment on isolators or for equipment with damping in- 
tentionally built into it to control vibration responses. Such an amount of clamping may 
also be unintentionally present due to the use of plastic and elastomerlc insulation or 
other materials as well as coulomb damping between parts. 

Figure 10 shows the spectra of a pulse which meets the requirements for the nominal 
6 millisecond pulse of M1L-STD-810. It is seen that the undamped negative response at 
fT ■ 4.0 is somewhat less than that shown in the ideal case. The undamped negative re- 
sponse in the ideal case is 23 percent greater. The ideal case is 82 percent greater than 
the response for C = 0.1. This frequency is 581 cps. If we extrapolate to 1000 cps, the un- 
damped negative spectrum for the ideal case is approximately 100 percent greater than 
the undamped negative spectrum of the assumed test pulse. At 1000 cps the undamped neg- 
ative response for the ideal pulse is approximately 300 percent greater than the damped 
negative response for the condition C = 0.1 for the assumed test pulse. 

The point of these comparisons of assumed test spectra with the undamped negative 
spectra of the ideal terminal peak sawtooth is to emphasize the fallacy of testing in only 
one direction along each of the 3 principal axes of the equipment. In other words, the as- 
sumption that positive and negative responses for a terminal peak sawtooth test are equal 
is Justifiable only under certain highly restricted circumstances. 

Response spectra for the ideal half-sine case are shown in Figure 6. Damped positive • 
and negative half-sine spectra were previously presented by Shapiro and Hudson (Refer- 
ence 25) and Rubin (Reference 6). They were recomputed for comparison purposes for 
this study. The most important feature of these spectra are the low values in the negative 
spectra and the nulls or tendencies to nulls in the negati ve spectra at fT values of 1.5 -t- n, 
Jacobsen and Ayre (Reference 5) have shown these nulls to be a characteristic of symmet- 
rical pulses. It is also interesting to note that the addition of damping up to some maximum 
value increases the negative responses at these nulls. Increasing damping beyond this value 
causes a decrease in the negative responses until they become zero for critical damping. 
Examination of the positive spectra of Figures 7 through 12 indicates that an analogous 
condition is also present in the positive spectra. 

Summary plots for each of the four values of damping are presented in Figures 13 through 
16. These graphs can be used for interpolation and extrapolation of the responses to a ramp- 
sine function of any TR/T ratio. The first of these figures shows the undamped case. The 

following points can be deduced from the figure: 

(a) In the impulsive behavior region where fT is less than .25, the responses in both 
the positive and negative spectra are equal, except for sign, and the differences due to a 
change of TR/T are at a minimum. The actual differences are proportional to the differ- 

ences in the areas of the excitation functions. 

(b) The positive spectrum between fT = .25 and 2.0 is sensitive to changes of Tp/T. 

This is due to the combined effects of changes in shape and area of the excitation function. 

(c) The region above fT = 2 is approximately unity in the positive spectrum which indi- 
cates that this area is relatively insensitive to the ratio of T /T. 

'T 
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(d) The negative spectrum Is quite sensitive to changes In TR/T for values greater than 

fT ■ .25 with the single exception of values of fT near 1.2 where the values tend to be 
nearly equal and nearly unity for all exciting functions. Since TR/T Is a measure of the 

degree of symmetry present In the excitation function. It Is evident that the effects of the 
degree of symmetry are more pronounced In the negative spectrum. 

The same general statements apply to the case for a damping ratio of .1 shown In Fig- 
ure 14 except that sensitivities to differences of TR/T have been somewhat deemphaslzed 
by the addition of damping. 

When the damping ratio is .5, as shown In Figure 15, the negative portion of the spectrum 
tends to become insignificant while the positive portion tends to be relatively insensitive 
to changes of TR/T throughout the spectrum. 

The final case considered is for critical damping. This case is shown in Figure 16. Since 
the definition of critical clamping Implies a minimum response of zero, there is no negative 
spectrum. The positive portion of the spectrum is even more insensitive than the previous 
case. 

FOURIER SPECTRA 

The Fourier spectra were computed from the Fourier Integral as follows: 

FM  *ß*)•'** dt 

P(») ■  J0
T m cos ^ dt -J ;0

T f(t) sin wt dt 

F(üj)  = RI F(w)]  + JI[F(aj)] 

This equation provides data for the Fourier real and imaginary spectra. They are some- 
times referred to as the cosine and sine spectra respectively. 

An alternative form of the Fourier spectrum which Is preferred by some engineers Is: 

P(«)  =   |F(u,)lej0(ü5) 

|F(a;)|   =   {R2[F(aJ)]  + I2[F(W)]|1/2 

^■-■'-Wf 
The latter two equations provide data for the Fourier amplitude and phase spectra. Since 
both methods of presenting the spectra are useful, the small effort required to present 
them in both ways was considered worthwhile. 

The Fourier amplitude and phase spectra are shown in Figures 17 through 23. The 
abscissa is normalized for general applicability by multiplying the frequency of the 
Fourier component by the pulse duration. The ordinate values are normalized by divid- 
ing by the value of F(Cü) at w« 0. This is merely the area of the forcing function. The 
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values of |F(co) I for any ramp-sine function can be interpolated by knowing the peak value 
of the function A the duration T, and the rise time TR. Values of F(0)/AT can be interpo- 

lated from Table 1 of the Appendix. From these, IF^) I is obtained by multiplying the Or- 
dinate by F(0)/AT from the table and the known amplitude and duration AT. The frequency 
f is obtained by dividing the abscissa by T. Phase angles ^(u.) are determined directly 
from the curves. Examination of the half-sine spectra of Figure 17 indicates that zeros of 
the absolute value occur at 1.5-1- n. This is to be expected since the undamped residual 
shock spectrum is related to the Fourier spectrum by the constant frequency factor u: 

and these zeros were observed in the undamped shock spectrum. It is also seen that phase 
discontinuities exist wherever these zeros exist. These can be shown to be true disconti- 
nuities since the sine of the angle is discontinuous at the same point. 

In the other phase spectra, apparent discontinuities are seen. These, however, are not 
true discontinuities. They are merely the result of plotting the phase as an angle between 
0 and 2 it radians. It can be shown that the tangent of the phase angle at an apparent dis- 
continuity is continuous. Therefore, the phase angles must also be continuous at the ap- 
parent discontinuity. Tecause the Fourier components exist forever, it can be shown that 
the phases of the components can be described by any angle which is different from ^(co) 
by the angle ±2nff. 

A close study of the results obtained in the spectra of Figures 17 through 23 has not been 
attempted. However, it is obvious that major characteristics of the phase spectrum can be 
correlated with major characteristics of the amplitude spectrum. For example, the half- 
sine pulse shows discontinuities in the phase spectrum at the same frequencies that zeros 
occur in the amplitude spectrum. In Figure 18, the points of maximum curvature and points 
of inflection of the phase spectrum occur at odd and even multiples at it/2 respectively and 
seem to be related to some corresponding point (as of now undetermined) in the amplitude 
spectrum. This suggests the possibility that the phase spectrum may be determined from 
the amplitude spectrum. Since the Fourier integral can be inverted to obtain the time his- 
tory, this in turn implies the possibility of inversion of the undamped residual shock spec- 
trum since it fully determines the Fourier amplitude spectrum. No conclusions will be 
made on this subject and it is reserved for future study. 

A summary plot of the amplitude and phase spectra is shown in Figure 24. Examination 
of the amplitude spectrum shows the low frequency values to be close together below 
fT ■ 1.0. At fT = 0, all values converge to unity. Tills could have been predicted from the 
shock spectra. 

The extreme effect of asymmetry, as represented by the sawtooth case TR/T = 1.0, is 

to smooth out the spectra, both amplitude and phase. The extreme effect of symmetry, as 
represented by the half-sine case TR/T = .5, is the introduction of discontinuities in both 

the amplitude and phase spectra. Intermediate cases provide a pmooth transition from 
one extreme to the other. The case TR/T = .556 is particularly interesting since it shows 

a rather large variation in the phase spectrum as it approaches the discontinuous spec- 
trum of the symmetrical function TR/T » .5. 

The normalized real and imaginary spectra are plotted in Figures 25 through 31. The 
values of the real and imaginary parts can be determined by multiplying the ordinate by 
the value of F(0)/AT from Table 1 of the appendix and the known value of A and T. The 
frequency is determined by dividing fT by T as before. 

8 
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In general, the greater the symmetry, the smoother the spectra, both real and imaginary. 
This is most evident at the higher frequencies. 

It is interesting to note that die real part of the half-sine case TR/T ■ .5 is negative for 
all values of fT greater than .5. 

A summary plot of real and imaginary spectra is shown in Figure 32. At the lower fre- 
quencies the curves converge to the values at unity and zero in the real and imaginary 
spectra indicating that the lower frequencies are less sensitive to differences in pulse 
shape. 

CRITERION FOR PROXIMITY FAILURES 

There are many types of equipment in which the change in distance between two elements 
due to the presence of a dynamic environment is a criterion for failure. A simple model of 
an equipment consisting of two mechanically uncoupled linear single-degree-of-freedom 
systems is shown schematically in Figure 33. The prazimity of the two masses can change 
in accordance with dynamic excitations. If the distance between the masses becomes zero, 
collision occurs which may result in deformation or fracture of mechanical systems or 
direct shorts in electrical systems. The clearance between adjacent parts in mechanical 
systems may be either increased or decreased by the effects of an exciting motion. The 
results may lead to either malfunction or physical damage due to interaction of mechani- 
cal elements attributable to increased or decreased friction or interference between mov- 
ing parts. In an electrical system, a multitude of failures can occur due to changes in the 
proximity of two elements. The direct result is a change of dielectric strength, magnetic 
or electrostatic field strengths. These in turn cause breakdowns in insulation, changes in 
capacitance, inductance, mutual indurtanre, etc., leading to any number of malfunctions 
or to permanent damage to components of the electrical system. 

If a ground acceleration u(i) is applied to the simple equipment of Figure 33, it causes 
a displacement of the base u(t) which is transmitted to the two masses through the rigid 
frame and the springs and dampers of the equipment. The absolute motions of the adjacent 
surfaces of the two masses are x. (t) and x» (t). The relative displacements of these two 

masses are ö (t) and ö2(t). The proximity of the masses at any time is the distance D(t) 

and DÄ is the static value when the system is at rest. 

D(t) » x2(t) -  XjCt) + D^ 

x^t) = u(0 + «jCt) 

x2(t) = u(t) + ö2(l) 

Substituting for x (t) and x (t) in the first equation: 

D(t) =  ö2(t) -  öj« ♦ Dm -  A(t) + D^ 

The symbol D is called the "proximity" and A is called the "proximity criterion." 
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While the complete time history of the proximity function D(t) might be enlightening, 
most engineers would find the extreme values more useful. 

D =   D     + A max st      **max 

Dmln '  Dst + Ami„ 

If the equipment is excited in both positive and negative directions, the maximum absolute 
value of the proximity function is of most importance. 

IDI       = ID, + AI max st      a max 

Thus Ais established as an important criterion for determining the proximity failure po- 
tentential of an exciting motion. This is somewhat analogous to the equivalent static ac- 
celeration of a single degree-of-freedom system which Walsh and Blake (Reference 26) 
proposed as a criterion for the failure potential of a motion. The latter is usually plotted 
as a positive function of the frequency of an undamped system and called the shock spec- 
trum. 

This suggests the possibility that "proximity spectra" might be determined by plotting 
A        and A   •   for the two-mass system of Figure 33. Since an additional mass is present, 

it would require a second frequency axis. Such a scheme would generate two surfaces 
(A        and A   . ) on a three dimensional plot. The development of this idea, however, is 

beyond the scope of this paper. 

An upper bound for the proximity criterion A can be obtained from the undamped posi- 
tive shock spectrum by adding the relative displacements. A       and IAI        would be the 

positive value of this sum and A   .   would be the negative value. This method provides a 

conservative estimate of the possibility of collision or proximity failures. 

An indication of the possibility of overconservatism may be obtained by examining the 
undamped residual spectrum (or the undamped negative spectrum). If the proximity cri- 
terion has one or more extreme values In the residual era, that is, after the excitation 
has ceased, its positive and negative values may be much less than those determined 
from the positive spectrum. This is particularly true if the pulse tends toward symmetry. 
Since it cannot be determined whether the extremes of proximity occur during the pulse, 
after the pulse is over, or in both eras, when the negative (or residual) spectrum is dif- 
ferent from the positive spectrum, it will be necessary to compute the time history of the 
proximity criterion if an over-conservative estimate is unacceptable. 

The preceding discussion also applies to the determination of the proximity criterion 
for the model equipment with damped spring mass systems. 

Although the proximity criterion has been developed for study of shock excitations there 
is no reason to limit it to shock. It can also be useful in the study of the proximity failure 
potential of random and multi-sinusoidal vibration and other forms of excitation. 

10 
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SAWTOOTH VERSUS HALF-SINE 

Another reason will be advanced In this section for preference of the terminal peak 
sawtooth for a general test. Two other reasons have already been discussed. 

It has already been pointed out that the positive spectrum of the half-sine pulse Is less 
constant than that of the sawtooth and there are nulls In the negative spectrum. In other 
words, the half-sine pulse shows much more frequency discrimination than the sawtooth. 
If It could be shown that the environment discriminated against these frequencies In the 
same way, one could say the half-sine would be an Ideal test. Unfortunately, this Is not so. 
The environment for a variety of equipments mounted In a variety of ways on a variety of 
structures In a variety of vehicles Is largely unpredictable. The result Is usually a some- 
what arbitrary estimate of a positive and negative design shock spectrum of constant ac- 
celeration over a given frequency range. In other words, the design spectrum for a gen- 
eral test must be nondlscrlmlnatory since we cannot predict how nature will discriminate 
against certain frequencies. 

In the past. It has been assumed that If one were willing to overtest at some frequencies 
* by as much as 76 percent, the half-sine would produce the minimum positive and negative 
values by testing in both positive and negative directions along the test axis of the equip- 
ment. 

The half-sine pulses of military specifications were not based on shock spectra, but on 
expected acceleration Inputs from the environment with no consideration of the spectral 
character of the environment. 

There are several ways of Judging the equivalence of the half-sine and sawtooth waves 
for comparison purposes. The method used here was to assume that the pulses were 
equivalent if they were equal in area and duration. This means that the peak amplitude of 
the sawtooth is 4/v times the peak amplitude of the half-sine. This Is partially Justified 
when it is realized that an environmental response spectrum based on half-eine Inputs 
with various durations would be 1.76 times the input amplitude. The maximum response 
to the equivalent sawtooth is 1.61 times the input. The energy requirements for both pulses 
are equal. 

Proximity criteria A for the model equipment of Figure 33 were computed on an analog 
computer for an Ideal half-sine of unit amplitude and unit duration and an ideal sawtooth 
having an amplitude of 4/ff and unit duration. The frequencies f   and f™ were 1.5 and 1.55 

respectively. These frequencies are in cycles per unit time. If the unit of time is 10 
milliseconds, the pulses would be 10 milliseconds long and the response frequencies would 
be 150 and 155 cycles per second. They were chosen so that the residual responses were 
at or near a null in the residual spectrum and were also close together. The first of 
these conditions insures that the residual responses will be at or near zero. The sec- 
ond condition would Insure that the two responses would be very nearly in phase with each 
other during the excitation, and the proximity criterion in this era would also be nearly 
zero. Tills is shown to be true by examination of the first computer record from the left 
of Figure 34. Positive, negative, and absolute values of the proximity criterion are all 
very small In comparison to the proximity criteria for the sawtooth shown in the second 
record. The third and fourth records compare the proximity criteria when a goodly a- 
mount of damping (C = 0.1) Is present. These proximity criteria cannot be compared 
directly to those in the first and second records, because the amplitude scale is differ- 
ent. They are actually smaller than those for the undamped cases. It is seen that the 

11 
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addlüoo of damping greatly reduces the proximity criterion in the residual eras, but has 
much less effect on those during the excitation era. Nevertheless, the sawtooth still pro- 
duces larger values of positive, negative, and absolute proximity criteria. 

The same equipment was also subjected to pulses having a relative duration of .4333 as 
shown in Figure 35. This pulse length was chosen to nearly maximize extreme values of 
the proximity criteria for the half-sine excitation. The same results would have been ob- 
tained if the duration had remained at unity and the frequencies at the two systems had 
been changed by the factor .4333 to .65 and .672. A change in the input is analogous to a 
change in the environment while a change in the response frequencies is analogous to a 
change of an equipment being tested. It is evident that even near frequencies of maximum 
values for the positive, negative, and absolute proximity criteria of the half-sine, the prox- 
imity criteria of the sawtooth are 96 percent of those for the half-sine. It can be shown that 
a sawtooth pulse which produces the same maximum response at the same frequency as the 
half-sine and has the same area will produce the same extremes of the proximity criterion. 
This is another pulse which can be considered equivalent. This criterion for equivalence 
was actually used in converting Air Force half-sine tests to sawtooth tests. 

CONCLUSIONS 

(1) The ramp-sine function is more closely related to the actual test waveform generated 
during a sawtooth test than previous theoretical pulses and is more Justifiable by physical 
reasoning. 

(2) Shock spectra and Fourier spectra for a variety of deviations from ideal half-sine 
and sawtooth pulses have been determined. These spectra can be used in design work and 
in choosing test waveforms. 

(3) The proximity criterion A proposed in this paper provides insight into the ability of 
a shock excitation to produce proximity or ooUisioo failures in a simple equipment which 
cannot be obtained from the shock spectrum. It can also be used to study other forms of 
excitation such as random Vibration. 

(4) On the basis of present knowledge, the terminal peak sawtooth is a considerably 
better waveform than the half-sine for creating proximity and collision failures in a 
simple equipment. This conclusion applies whether the test is applied in only one direc- 
tion or in opposite directions along the test axis. Since the terminal peak sawtooth and 
half-sine are representative of the effects of asymmetry and symmetry, the conclusion 
can be generalized to show the superiority of asymmetrical over symmetrical waveforms. 

(5) The effects of damping and drop-off time in the sawtooth pulse reduce the negative 
spectrum enough to warrant testing in both directions along each of the three principal 
axes. For example, damping and drop-off reduced the undamped negative response to an 
ideal pulse by 75 percent for a comparable 1000 cps system with 10 percent damping. 
(This does not mean that the negative spectrum is unimportant. It is quite important 
when proximity failures are considered.) 

(6) Negative spectra should be plotted as part of any data reduction process which re- 
sults in shock response spectra since this spectrum is important in assessing the pos- 
sibility of proximity failures. 

12 
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APPENDIX 

FORMULAS AND TABLES 

Point of Tangency of the Ramp-Sine Function 

The point of tangency of the ramp-sine function (B, T.) Is determined from the condition 
that both f. (t) and fJt) are equal at time T   and their slopes are also equal at T . These 

conditions lead to the following pair of simultaneous equations: 

B 

B 

ir(T   - 2TR +T) 
Asin * *.   0 2(T-TR) 

irA irCT. -2^+^ 
2(T - Tp)  cos 1 R 

R' 2(T-TD) 

The solution of this pair is: 

2(T-TR) tCri-2TR"fT) 
 = tan - 2(T-TR) 

This is a transcendental equation and an exact analytical solution cannot be obtained. It 
was evaluated by iterative methods on a digital computer. B was then evaluated by sub- 
stituting T   in the first of the simultaneous pair. The evaluations of  B and T. were 

carried out for various ratios of TR/T. The normalized results of these computations 

are compiled In Table 1. Values of B  and T. for values of T„/T not listed may be inter- 

polated. B  and T   may be obtained from the table value by multiplying by  A  and T 
respectively. 

Determination of Area of Ramp-Sine Function 

The determination of the value of F(0) for normalization of the Fourier spectra is as 
follows; 

F(«) -  JoTf(t)e-Ja5t  dt 

When a; =  0, this reduces to: 

F(0) ■  .r0
Tf(t)dt 

This Is simply the area between the excitation function and the time axis. 

15 



AFFDL TR 64-175 

For the ramp-slne function: 

fT fT TT(t-2TR^T) 
F(0) = -^- J0 ! tdt  + A JTi   8ln       2(T . Tg"" dt 

the solution of this equation is: 

BT         2A(T.TR)   r        Trcr-2TR) ITT^ rrT 
F(0) - -y- + jj [cos  2(T : TR)    (COS 2(T : TR) " cos 2(T: TR) 

+ 8in     2(T-TR) l8ln  2(T-TR)    " ^^T M 
This equation has been solved for a number of TR/T ratios. The values computed have 

been normalized by division by the product AT. They are included in Table 1. 

Alternate Excitations and Responses 

Several alternate forms of excitation and responses are given in Tables 2 and 3.  In 
general an excitation which is the nth derivative or Integral of any excitation in the tables 
results in a response which is the nth derivative or Integral of the corresponding tabular 
response. 

16 
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TABLE 1 

FREQUENCY AND AREA* DATA FOR THE RAMP-SINE FUNCTION 

TR/T B/A Tj/T F(0)/AT 

1.0000 1.0000 1.0000 .500 

.9756 .9999 .9754 .503 

.9524 .9995 .9514 .507 

.9302 .9989 .9281 .510 

.9091 .9980 .9054 .513 

.8889 .9968 .8832 .517 

.8696 .9954 .8615 .520 

.8511 .9937 .8404 .523 

.8333 .9917 .8196 .526 

.8065 .9880 .7873 .531 

.7813 .9835 .7559 .536 

.7576 .9781 .7252 .541 

.7353 .9719 .6952 .546 

.7143 .9647 .6658 .551 

.6897 .9541 .6296 .557 

.6667 .9417 .5938 .563 

.6452 .9270 .5583 .569 

.6250 .9096 .5227 .575 

.6061 .8889 .4867 .581 

.5882 .8641 .4500 .588 

.5714 .8336 .4118 .595 

.5556 .7955 .3713 .602 

.5405 .7455 .3272 .609 

.5263 .6756 .2763 .617 

.512« .5621 .2108 .625 

.5000 .0000 .0000 .637 

*F(0) is numerically equal to the ar ea of the function. 
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TABLE 2 

ALTERNATE FORMS OF EXCITATION AND UNDAMPED RESPONSE 

|                               Excitation (E) Response (R) 

1                 Force applied to mass 
(Ground Immobile) 

m 
k 

Absolute displacement X 

Ground displacement u(t) Absolute displacement x 

1                Ground acceleration -u(t) 
2  ' Relative displacement 6 

Ground acceleration ii(t) Absolute acceleration X 

Ground velocity u(t) Absolute velocity X 

nth derivative of ground 
displacement 

dnu(t) 

dtn 

nth derivative of absolute 
displacement 

dnx 

dtn 

TABLE 3 

ALTERNATE FORMS OF EXCITATION AND DAMPED RESPONSE 

|                               Excitation (E) Response (R) 

Force applied to mass          F(t) 
|                 (Ground Immobile)                  k 

Ground acceleration             "y1^ 
wn 

I                 Ground acceleration             ü (t) 

Absolute displacement         x 

Relative displacement          ft 

2 Relative displacement      -aft 
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f(t) 

Figure 2.    (a) Triangular Function Used In Previous Studies 

^ t 

(b) 

Figure 2.    (b) Ramp-Sine Function Studied in This Report 
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Figure 17.  Fourier Amplitude and Phase Spectra for T  /T ■ . 500 
R 
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Figure 18.  Fourier Amplitude and Phaae Spectra for T  / T ■ . 556 
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Figure 19.  Fourier Amplitude and Fbaae Spectra for T /T ■ .625 
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Figure 20.   Fourier Amplitude and Phase Spectra for T  /T = .758 
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Figure 21.  Fourier Amplitude and Phase Spectra for T  /T ■ . «70 
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Figure 23.  Courier Amplitude and Phase Spectra for T_/T ■ 1.000 
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Figure 24.  Variations In Fourier Amplitude and Phase Spectra 
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Figure 25.  Fourier Real and Imaginary Spectra for T /T ■ . 500 
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Figure 26.   Fourier Real and Imaginary Spectra for T  /T = . 556 
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Figure 27.  Fourier Real and Imaginary Spectra for T /T « .625 
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Figure 28.   Fourier Real and Imaj^nary Spectra for T  /T » .758 R 
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Figure 29.  Fourier Real and Imaginary Spectra for T /T = .870 
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Figure 30.  Fourier Heal and Imaginary Spectra (or T /T > .909 
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Figure 31. Fourier Real and Imaginary Spectra (or T /T » 1.000 n 
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Figure 32. Variation* of the Fourier Real and Imaginary Spectra 
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